#### **Engineered Particulates for Co-Firing of Diverse Feedstocks**

Joseph J. McCarthy

mccarthy@engrng.pitt.edu

Department of Chemical and Petroleum Engineering University of Pittsburgh

Grant DE-FG26-02NT41554

NETL-UCR/HBCU/OMI Workshop



#### Motivation



(AIChEJ, 1996)
Segregation &



(PNAS, 1996)
Pattern Formation

- Differences in mechanical properties
- Inconsistent feed (possibly burn quality)



#### **Motivation (cont.)**



# Cohesion sometimes segregation!

- Known long recent quantitative studies
- can this be controlled?



#### Outline

- Cohesive Characterization Tools
  - Static systems
  - Sheared systems
  - Gas-solid systems
- Mixing/Segregation Aggregate Formation
  - Psuedo-Static systems
  - Sheared systems
  - Gas-solid systems



# Cohesive Characterization Exps.



- "Perfectly" static (a)
- Prototypical granular flows(b) and (c)



# **Static Systems**

#### Relevant Forces

- Particle self-weight (W)
- Capillary Force  $(\overline{F_c})$



$$Bo_g = \frac{F_c}{W} = \frac{3\gamma}{2R^2\rho g}$$



#### **Angle of Repose - Static Heap**







• Sharp transition near  $Bo_g = 1$ 

• Vastly different materials all follow same trend

#### **Hopper Discharge**





- Sharp transition above  $Bo_g = 1$
- Essentially no flow thereafter (arching occurs)



#### **Collision Number**







#### **Gas-solid Flows**





• Minimum fluidization velocity *also* changes



# Gas-solid Mixing





• Increase in fluidization velocity  $\approx$  decrease in  $\gamma$ 



#### The Capillary Number



• 
$$Ca_g = \frac{12\epsilon^3 \gamma}{(1-\epsilon)(u-v_p)} \left[ \frac{1}{300(1-\epsilon)\mu_g + 7\rho_g(u-v_p)R} \right]$$

• Two curves collapse with  $\overline{Ca_g}$ 



#### The Capillary Number (cont.)





# Micro-mixing Model – Static Systems





### A Phase Diagram



• Predict both "mixed" and segregated phases



# Manipulating the Phase Diagram





• Control mixing/segregation via surface properties!



# Controlling Mixing/Segregation



• Materials that would mix can be made to segregate and vice versa



#### **Sheared Phases**





#### **Gas-Solid Phases – Same Density**





#### Gas-Solid Phases – Diff. Density





#### Outlook

- Cohesion may be well characterized using discrete tools
- Controlling mixing/segregation works for psuedo-static systems
- Simulations/experiments in gas-solid and sheared systems are necessary



#### Acknowledgments

- National Science Foundation
- Department of Energy NETL/UCR
- Hongming Li, Kunal Jain, Deliang Shi

